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In reality the neighbours move and roughly these move- 
ments can be classified as 'in-phase' and 'out-of- 
phase'. For 'in-phase' movement the potential func- 
tion is effectively softened, the mode frequencies are 
lowered and the amplitudes increased. This is not 
compensated fully by the 'out-of-phase' motions which 
correspond to raised frequencies and smaller ampli- 
tudes. 

In the structures of benzene and sulphur the arrange- 
ment of neighbours is much more isotropic than in 
pyrene and phenanthrene. Comparison of the indi- 
vidual diagonal elements of T and L in the cases of 
benzene and sulphur shows no enormous discrepancy 
over and above a softening factor. However as the 
structure becomes increasingly anisotropic so the 
softening factor increases and detailed discrepancies 
appear. 

The most striking discrepancy is in the value of 
T22 for pyrene. In this crystal pairs of molecules related 
by the centre of inversion lie on parallel planes distant 
3.5/~, front each other, and they are almost perpendi- 
cular to the b axis. The close approach of so many 
atoms along this direction causes the potential to 
be very hard and the Einstein model gives a very small 
value, T22=0.0098 A 2. The lattice-dynamical calcula- 
tion yields a value of 0.0486 A 2, which is in good agree- 
ment with the experimental value of 0.0369/~2. These 
experimental values come from the constrained refine- 

ment of neutron diffraction data (see Pawley, 1972b), 
and show a satisfactory overall agreement with the 
Born-von KS.rmS.n calculation. 

Thus it is possible to make qualitative arguments 
and conclusions using the diagonal elements of T and 
L. However no such argument can be used for the off- 
diagonal elements, including the elements of S. These 
are determined by the finer aspects of the molecular 
packing, and thus our understanding of intermolecular 
forces cannot be furthered by simple Einstein-model 
calculations. In many ways therefore our result is dis- 
appointing, but at least we learn to avoid making an 
assumption which is superficially plausible but which 
has no physical justification. 
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A many-beam dynamical theory for Bragg scattering effects in diffuse electron scattering is developed 
which takes multiple diffuse scattering into account. For non-absorbing crystals the theory is shown to 
include previoas theories for Kikuchi lines and bands; with absorption, a weaker dependence on the 
anomalous absorption parameters than in previous theories is found. The variations in symmetrical 
Kikuchi-band contrast are discussed, and the thickness dependence of the angular range with excess 
contrast is explained. For typical higher-order systematic lines the theory predicts contrast variations 
similar to the ones found for the band, i.e. characteristic thickness-dependent disappearance angles and 
angle-dependent disappearance thicknesses for the line contrast. The low band contrast observed from 
very thick specimens is found to be due to the reduced anomalous absorption associated with the higher- 
order diffuse scattering contributions. Calculated Kikuchi-band contrast due to multiple thermal 
scattering in Si is given. 

Introduction 

Bragg scattering effects in diffuse electron scattering, 
i.e. the Kikuchi lines and bands, have been discussed 
by various authors (Pfister, 1953; Kainuma, 1955; Ta- 
kagi, 1958; Fujimoto & Kainuma, 1963; Gjonnes, 
1966; Hall, 1970; Thomas & Humphreys, 1970; Ishida, 

1971; Okamoto, Ichinokawa & Ohtsuki, 1971), and 
at present the absorption-independent diffraction ef- 
fects observed from relatively thin crystals are well 
understood. In particular, qualitative explanations 
have been given for various effects observed in the 
narrow lines (Kambe, 1957; Gjonnes & Watanabe, 
1966; Uyeda, 1968; Gjonnes & Hoier, 1969; Lally, 
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Humphreys, Metherel & Fischer, 1972; Hoier, 1972 
a,b) .  

In thick crystals and especially for the Kikuchi bands 
the contrast has been found to depend strongly on 
anomalous absorption and multiple inelastic scattering 
effects (e.g. Pfister, 1953). Recently a theory was sug- 
gested by Thomas & Humphreys (1970) which ex- 
plained some of the observed effects, in particular the 
line in the middle of Kikuchi bands frequently ob- 
served at high voltages. Their description, however, 
deviates considerably from observations in the thick- 
crystal case (Uyeda & Nonoyama, 1967) where the 
theoretical contrast variation with thickness is the op- 
posite of the observed one. A similar type deviation is 
found in electron microscopy where the standard many- 
beam theory gives an overestimate of the anomalous 
absorption effects. 

The failure of existing theories to be valid at any 
scattering angle and in the whole experimental thick- 
ness range seems mainly to be due to the neglect of 
multiple diffuse scattering. Multiple scattering is par- 
ticularly important at large scattering angles and in 
thick crystals (Lenz, 1954), and as multiple scattering 
and absorption are closely related effects they have to 
be treated simultaneously. This may especially be im- 
portant for the available methods for structure-factor 
determination (Watanabe, Uyeda & Fukuhara, 1968; 
Gj~nnes & Hoier, 1971) as the accuracy of these methods 
are dependent on a precise theoretical description of 
the diffraction effects utilized. 

The purpose of the present studies has been to in- 
vestigate the influence of multiple diffuse scattering on 
the contrast of Kikuchi lines and bands in general. The 
contrast variations with thickness and angle from the 
incident beam direction have in particular been studied. 
The theory derived has been applied to calculations of 
Kikuchi bands in Si due to thermal scattering which 
gives an important contribution at large scattering 
angles and in addition can be represented in a con- 
venient analytical form. 

Theory 

Single diffuse scattering 
A theory for diffraction effects in diffuse electron 

scattering has to include Bragg scattering of the inci- 
dent beam and multiple diffuse scattering as well as 
Bragg scattering between the different coupled direc- 
tions in the background scattering. The following equa- 
tion for the intensity in the coupled directions k 0 + s + h  
after kinematical single diffuse scattering in a slice dz 
at depth z in the specimen was derived by Gjonnes 
(1966): 

dll(s+h)=dz ~ ~ ~ ~ Shg(2)S~,o,(2)f~(s+g-f ) 
g g" f f '  

× f ~ ( s + g ' - f ' ) S o f ( 1 ) S ~ f , ( 1 ) .  (1) 

/1 is a diffuse scattering coefficient and any energy loss 
accompanying the transition shall here and below be 

neglected. The Bragg scattering factors are given by 
the scattering matrix elements, e.g. 

sL(2)= J ChCg exp [iyJ(t - z)]. (2) 
J J 

(1) refers to the upper, (k0,z), and (2) to the lower part, 
( k 0 + s , t - z ) ,  of the crystal, and Co J is a Bloch-wave 
coefficient associated with the anpassung ~,J. Equation 
(1) includes both thickness-dependent and thickness- 
independent terms. The former is important for the 
interpretation of diffraction patterns from specimens 
with well defined thicknesses; with variations in the 
specimen thickness they can be excluded. The Bragg 
scattering factors in equation (1) will thus only consist 
of terms of the type S~g(2) J* Shg,(2) and S~of(1)Sto*r,(1 ). 
Those with i = j  and i ~ j  are the intraband and inter- 
band terms respectively. 

When the incident beam is not very close to a Bragg 
condition, the dominating factors in equation (1) ap- 
pear f o r f = f ' = 0 .  The number of terms to be included 
in the summation over band indices is therefore 
determined from the size of the Bloch-wave intensity 
excitation coefficients. For the majority of incident 
beam directions and especially at conventional volt- 
ages, one of these, [BgI 2, will be much greater than the 
others [see e.g. Fig. 6(b)]. A modified equation (1) 
results, viz. 

dIx (s + h) 
dz 

where 

1 _ I,(s+h)=lBo~l 4 ~ ~ ~ ShJ,(2) 
t ~ g, j 

j* × Sng,(2)Fl(s,g,g') (3) 

/'i (s, g, g') = fl(s + g)f~' (s + g ' ) .  (4) 

B~ refers to the incident beam direction k0 and 
Fl(s, g,g') includes all types of diffuse scattering. These 
equations correspond to the expressions used by Oka- 
moto et al. (1971). If also absorption is included and 
only two beams are taken into account, the resulting 
modified equations correspond to the ones given by 
Hall (1970) and Ishida (1971). 

7 f 

~ ~  s+f  

7 o I f 
Fig. 1. Different types of multiple diffuse-scattering processes 

schematically shown. 



Diffuse scattering into the particular directions which 
are associated with the Kikuchi lines and bands, will in 
such a description only arise from absorption of the 
discrete beams in the upper part of the crystal. All 
scattering into these directions at large depths in the 
crystal due to multiple diffuse scattering, is not in- 
cluded, in thick crystals, however, contributions due 
to this effect are essential for an interpretation of the 
observed patterns, as pointed out already by Pfister 
(1953). We shall now give a theory which takes these 
contributions into account. 

Multiple diffuse scattering 
The diffuse background may be more or less modi- 

fied through Bragg scattering effects depending on the 
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Fig.2. The variation with thickness of g(z)=exp (-I~z)P.(z), 
for different values of n. 
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Fig. 3. Multiple thermal scattering distributions. Si. 

incident beam direction. If the incident beam is close 
to a low-indices zone axis a complicated Kikuchi line 
diagram results which covers a large fraction of the an- 
gular range usually observed in the electron micro- 
scope. Such incident beam directions will not be con- 
sidered here; attention is focused on the case where 
only one dense row in reciprocal space is close to the 
Ewald sphere. The diffuse part of the diffraction pat- 
tern therefore essentially consists of a monotonically 
decreasing background on which a Kikuchi band is 
superimposed, as shown schematically in Fig. 1. 

In addition to single scattering from the direct beam, 
O, the contributions into the direction k0+s in Fig. 1 
are obtained by adding contributions due to multiple 
intra- and interband scattering from all the other di- 
rections k0+s'  in the diagram. These can roughly be 
divided in two types; the directions k0+s~, which in- 
volve Bragg scattering, and the 'random' directions 
k0 + s, which represent the main part of the observable 
area. For the latter, which are far from any Bragg con- 
dition, only one Bloch-wave component will be non- 
negligible, see e.g. Fig. 6(b), and this component can 
be ascribed to the particular dispersion-surface branch 
which is close to the zero sphere. The random direc- 
tions can thus be represented approximately by a plane 
wave with amplitude close to unity and a wave vector 
k~ approximately equal to k0. The corresponding ab- 
sorption coefficient,/d, will be the average coefficient 
for the specimen. 

The following model results: Multiple diffuse back- 
ground scattering is on the average described by a 
theory in which Bragg scattering is neglected; only the 
particular directions k0+s which correspond to the 
Kikuchi lines and bands, are modified through Bragg 
scattering and anomalous absorption effects. 

The theory of multiple scattering without Bragg 
scattering, has been discussed by Moliere (1948), Lenz 
(1954) and Keil, Zeitler & Zinn (1960). It is shown that 
the intensity can be written: 

l (s ,z)= ~ W,(z)F,(s) (5! 
n 

where W,, the probability for a particle to be scattered 
n times after transmission of a specimen with thickness 
z, is given by the Poisson distribution: 

(~z)" 
W,(z )=  ni e x p  ( - p z ) .  (6) 

F,(s) which is the probability for the particle to be ob- 
served in the direction ko+s after being scattered n 
times, can be found from the convolution integrals 

F.(s) = I F._t(s-s ')F~(s ')ds '  (7) 

where n > 0, Fo(s) = 5(s). 
To connect this treatment with a description of 

Bragg scattering effects, we shall apply a slice approach 

A C 2 9 A  - 6  
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similar to the one used above, and treat each nth order 
contribution independently. 

The contribution to the intensity in a direction 
k0 + s after one scattering event in a slice dz at depth z, 
such that the electron totally has been scattered n 
times, is written 

F,(s)P,(z)dz . 

Electrons scattered into the particular directions which 
are close to Bragg conditions are now separated from 
the ones in the random directions. The former will be 
exposed to Bragg scattering and consequently to anom- 
alous absorption on their way out of the crystal, i.e. 
in the thickness t -  z. 

The thickness-dependent quantity P,(z) is propor- 
tional to W,_l(Z), the number of electrons scattered 
n -  1 times after passing through the thickness z. P~(z) 
is hence the quantity which corresponds to the con- 
stant prefactor in eq6ation (3). By also taking the ab- 
sorption factors into account, one obtains a modified 
equation (3) from which the total single-scattering con- 
tribution is obtained through an integration over the 
crystal thickness, viz. 

la(s+h)= ~ ~ ~ S~o(2)S~;,(2)F~(s,g,g' ) 
J g g '  I' 

x exp ( - Id t )  oeXp (ktJz)Pl(z)dz (8) 

This equation, as equation (3) and equivalent expres- 
sions in previous theories for Kikuchi lines, is based on 
the existence of a coherence between the various Bragg 
scattering factors Shg(2)fl(s + g). The higher-order con- 
tributions, however, are a result of non-correlated 
scattering events in the upper part of the crystal. For 
n > l  any coherency is therefore lost, and a relation 
similar to equation (8) is obtained, including only the 
terms with g=g'. The total intensity can thus be 
written : 

I(s + h) = ~ exp ( - / d r ) {  ~g,g,~ S~g(2)S~:,(2) 

x F~(s, g,g') l exp (-pJz)Pl(z)dz 

+ ~.. : [S~olEF.(s,g)..I exp(-p'z)P.(z)dz }. (9) 
n > O  g 

The proportionality constant between P,(z) and 
IV,_ l(z) is determined by demanding that this equation 
transforms to equation (5) for a random direction. We 
get* 

p . ( z ) = ~ w . _ l ( z )  . 

The integrals in equation (9) which can be found ana- 

lytically, may profitably be represented by a power ex- 
pansion in A/tit: 

AJ. = A. { 1 - Aldt (All Jr) z 
n+ i  + (n-+l-) (n--+ 2)- 

(A/lit) 3 

- (n+ 1) (n+2)  (n+3)  
+...} (10) 

where 
A, = W,(z) (11) 

and 
All j =/1 j - - /1 .  

Using equation (2), equation (9) can hence be written: 

l ( s + h ) =  ~ ICglZ{A{ ~ ~ F1(s,g,g')CJoC ~, 
J g4:g '  

+ ~ NJ. ~ F.(s,g)lCgl2}. (12) 
n > 0  g 

where the C]~'s refer to the direction k + s. This equation 
is valid at any scattering angle and crystal thickness. 
It should be noticed that F,(s, g) has the form used in 
kinematical theory which is not the case for F~(s, g, g') 
The latter depends on the presence of Bragg scattering 
and may for small scattering angles be negative, as 
pointed out by Gj~nnes (1966). 

0'20 l 

I ! 
0'10 ~ 

E 

/ 3  /6 .~  

i /  <~- 

~: p -1  

* In the preliminary calculations (Haier, 1972a) a slightly 
different choice for P,(z) was made. Qualitatively the previous 
and present results are the same. 

022 044 066 

Fig.4. Calculated half-profiles for the 02~ band showing 
thickness dependence for S04a. 
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The importance of the higher-order diffuse scatter- 
ing terms can be seen from the thickness variation of 
the integrand, g(z), in equation (9). Neglecting anom- 
alous absorption this quantity can be written: 

g(z) =exp ( - # z ) P , , ( z ) .  

The variation in this function with n and z is shown in 
Fig. 2. For a given direction it is seen that rescattering 
of the background electrons makes the values of n 
for the most strongly contributing terms increase 
with increasing crystal thickness. In thick crystals these 
terms have typically n values of size #t. 

Special cases 
Modified intensity expressions which explain the 

most frequently observed diffraction effects, may be 
derived from equation (12) through some simplifying 
assumptions. 

For the most common types of excitation F~(s) has 
a maximum at or relatively close to s = 0, and is rapidly 
decreasing with angle from the incident beam direc- 
tion. For 17 > 1, F,(s) has a similar variation, but is less 
strongly peaked about the origin. F,(s) is thus much 
greater than F,,(s + g) if Isl '~ Igl. In this case one obtains 
for the deficient contrast: 

l ( s )=  ~ F,,(s) ~ ICgI4A~ (13a) 
n j 

with the accompanying excess contrast 

= I CoC,,I A,, (136) / ( s + h )  y . F . ( s ) ~  ~ j2 j 
n j 

which for negligible anomalous absorption can be 
written : 

l ( s )=  ~ F,(s)A,, ~, ]C~[ 4 (13c) 
n j 

and 

l ( s + h ) =  ~ F,,(s)A,, ~ ICgC~l 2. (13d) 
n j 

Comparing these equations with corresponding ones 
in previous theories, it is found that, e.g., the expres- 
sions given by Gjonnes (1966) are similar in form to 
equations (13e, d). The sum over all branches which is 
the important one from a multiple-beam diffraction 
point of view is equal while the prefactors are different. 
For an interpretation of observed contrast anomalies, 
however, this difference is usually eliminated by tilting 
the crystal until the anomaly of interest has a position 
on the plate where the background intensity varies 
slowly with the scattering vector. Alternatively one 
may use an approximate form by fitting a Gaussian 
distribution to the experimentally observed back- 
ground (Hoier, 1972b). 

Using crystal thicknesses which correspond to small 
anomalous absorption, the inclusion of multiple diffuse 
scattering will therefore not introduce corrections to 
existing methods for structure-factor determinations 
from diffraction effects in Kikuchi patterns. Within the 
present experimental accuracy estimates indicate that 
this is also the case in thicker specimens. 

The equations (13a, b) have terms which include fac- 
tors of the type 

n ! -  1 . . . . .  + . . . . . . . . . . . . . . .  e - u t  . n+  1 (!I+ 1) (n+2) 
(14) 

One may here approximate the prefactor of the paren- 
theses by a n-independent function which describe a 
mean angular variation. If, in addition, the n depen- 
dence of the terms in the parentheses is neglected the 
usual anomalous absorption exponential obtains. The 
resulting expression is equal to the one obtained taking 
all diffuse scattering to occur at the entrance surface. 
This assumption can therefore only be made provided 
the crystal thickness is small, i.e. terms with small n 
dominate in the intensity expression, and in this case 
one gets too strong a dependence on the anomalous 
absorption parameters. 

In thick crystals the assumptions leading to equation 
(13) are no longer valid as F,,(s+g) cannot be neg- 
lected. The full equation (12) has then to be used. 

The slow variation in F,(s) for a large s leads to the 
approximation F,(s) ~ F,(s + g) when [sl -~ Is + g[. For 
this case the different terms in equation (12) can be 
written: 

I~(s)=Fx(s) ~, [Cglzm1(l +GoJo,} (15a) 
J 

and for n > 1 

I,(s) = ~ F,(s) ~ ICglZA~, (15b) 
n> 1 j 

where 
G o J ~ c = ~  J J . • CoCo. 

g:~ g" 

The terms given by equation (15b) can for small 
thicknesses be neglected, i.e. l(s)~I~(s) which in the 
case of negligible anomalous absorption reduces to 

l(s) ~ FI(s)AI{ 1 + ~ ] rJ'zr:i'--0j "-' oo') • (15c) 
J 

This equation corresponds to the expression given by 
Kainuma (1955) neglecting fine-structure terms. The 
observed excess bands in thin crystals are due to the 
asymmetric second factor in the parentheses. This fac- 
tor is usually positive inside the band, i.e. between the 
first-order lines, and negative immediately outside. 

While equation (15a) gives an excess band, equa- 
tion (156) gives always a deficient band. The resulting 
contrast therefore depends on several factors; two im- 
portant ones are the crystal thickness which is in- 
cluded in A~, and the scattering angle through F,(s). 
From equation (7) it follows that the width of F,,(s) in- 
creases with n. Thicknesses can therefore be found for 
which equation (15b) dominates at large scattering 
angles while Ix(s) dominates at smaller angles giving 
deficient and excess contrast respectively. At an inter- 
mediate s a disappearance angle, fix, for the band con- 
trast is found./~1 is thickness-dependent and decreases 

A C 2 9 A  - 6* 
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with t. fix should not be mistaken for another disap- 
pearance angle oct, which appears in the low-angle re- 
gion where equation (I 5) is not valid. This angle, below 
which a deficient band is observed, is essentially due to 
the sign of the quantity Ft(s,g,g') in equation (12) for 
small scattering angles (Ishida, 1971; Okamoto et al., 
1971). The angle at increases with the crystal thickness 
as shown recently by Komuro, Kojima & Ichino- 
kawa (1972). 

The angular extent, l i t - a t ,  of the area with excess 
contrast therefore decreases with crystal thickness 
owing to the corresponding reduction in the first-order 
contribution. At larger t only a deficient band is ob- 
served. The previously unexplained contrast variations 
of Kikuchi bands along their length are therefore at 
present understood. 

it follows from the discussion above that scattering 
angles can always be found for which It(s) dominates at 
small t and the n > 1 contributions at large t. In accord 
with the observations of Pfister (1953), the contrast for 
constant s is therefore continuously decreasing with in- 
crease in crystal thickness, and an angle-dependent dis- 
appearance thickness for the band contrast is obtained. 

The approximations which were discussed in con- 
nexion with equation (14), may also be applied in 
equation (15b). Terms of the type ICJolZexp(-l#t)  
result, and we get an intensity expression equal to the 
one suggested by Thomas & Humphreys (1970) if the 
angle-dependent prefactor is either taken to be con- 
stant or approximated by an experimentally deter- 
mined distribution. As shown above, such a description 
can only be applied for small n, i.e. for thicknesses 
where ll(s) is non-negligible. Applied to cases were 
It(s) is small, however, this theory gives a qualitative 

explanation of the observed channelling effects; but 
a reasonable fit between theory and experiment can 
only be obtained in the intermediate crystal-thickness 
range. 

As multiple diffuse scattering is only taken into ac- 
count phenomenologically in the theory of Thomas & 
Humphreys (1970), in such a way that all electrons are 
exposed to anomalous absorption in the total crystal 
thickness, the deviation from the observed contrast 
will increase with thickness for large thicknesses; in 
the limit non-negligible intensity is only predicted in 
the well channelled directions. Having the same thick- 
ness variation a similar overestimate of the anomalous 
absorption effects is obtained for bend contours. In 
both cases this is due to the neglection of the multiple- 
scattering contributions at great depth in the crystal. 
These are included in equation (15) which gives a 
reduced contrast at large thicknesses in accord with 
observations (Uyeda & Nonoyama, 1967). 

Calculations 

The scattering functions F,(s,g,g') generally include 
all types of background scattering such as phonon, 
plasmon, single-electron scattering, disorder scattering 
etc., and convolutions between different processes may 
also be included. We shall here limit the discussion to a 
simple example, i.e. multiple phonon scattering. This 
type of background scattering represents an important 
contribution at large scattering angles and can further 
be expressed in a convenient analytical form using the 
method given by Hall & Hirsch (1965), with the ana- 
lytical representation of atomic scattering amplitudes 
given by Smith & Burge (1962). The integration in 
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equation (7) is approximated to include all s' in a plane 
normal to k0 giving F,(s) as a sum over exponentials. 
The resulting diffuse scattering distributions for Si at 
room temperature and 100 kV, are shown in Fig. 3 for 
n = 1 to 4. Fl(s) which for thermal scattering is negligible 
at small angles, has a maximum value near (sin 0)/2 = 
0.2 A -1 and is rapidly decreasing with angle for 
(sin 0)/2>1 A -1. The effect of subsequent thermal 
scattering is to smear out this distribution in favour of 
scattering to very small and in particular to higher 
angles. This is the origin of the observed net flow of 
background electrons outwards in diffraction patterns 
when the crystal thickness is increased, i.e. increasing 
the probability of higher-order scattering. 

The 022 and l i t  Kikuchi-band contrasts from Si 
have been calculated from equation (15). In all ex- 
amples 12 interacting beams have been used and all 
terms with n =  1 to 16 are included. The Fourier co- 
efficients for the real and imaginary part of the poten- 
tial have been taken from Radi (1970). 

The  022 b a n d  

Half profiles for the 022 band including the higher- 
order lines have been calculated for different thickness- 
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Fig. 6. Calculated variations in (a)Gg9 (see text) and (b) excita- 
tion coefficients with beam direction, g=02~.  

es and angles from the incident beam direction. The 
angle is below expressed by the quantity Shkz which is 
equal to the length of the reciprocal-lattice vector with 
the corresponding indices. 

The dependence of band contrast on thickness for 
s044 is shown in Fig. 4. The band appears with excess 
contrast at small thicknesses and deficient contrast at 
large thicknesses, the thickness of zero contrast being 
close to/~t = 3.5. As a measure of contrast we shall use 
the quantity R, where n is the order of the line, i.e. n = 1 
for the band, n = 2 for the second-order line etc. ,  

R,=  2 l'!(i-'-s-0- !,(o:_s_.) 
/,(i.s.) + I,(o.s.) " 

For n > I the intensities introduced in this equation are 
the extreme intensity values immediately inside (i.s.) 
and outside (o.s.) the ordinary line position; for the 
band contrast the intensities used are the ones halfway 
between the middle of the band and the band edge, and 
halfway between the first and second-order lines. 

R~ as a function of thickness for various scattering 
angles is shown in Fig. 5(a). For a given s the con- 
trast is continuously decreasing with thickness up to 
/~t ~ 9 with an s-dependent disappearance thickness be- 
tween / z t = 3  and 4. Above a thickness interval with 
close to constant R1, the contrast, i.e. ]Rll, slowly de- 
creases. 

The thin-crystal contrast is determined by the single- 
scattering contribution only, i.e. equation (15c), and the 
two important factors in this equation are shown in 
Fig. 6. The variations in the Bloch-wave intensity 
excitation coefficients shown in Fig. 6(b), are typical 
for conventional voltages and metals with atoms of 
relatively low atomic numbers, i.e. apart from the direc- 
tions close to Bragg conditions, one excitation coeffi- 
cient is much greater than the others. Within the 
band, the dominating branch-1 contribution will be 
positive as the sum G~, [Fig. 6(a)] here is positive. 
Moving towards the band edge G~g, increases more 
rapidly than I Cgl 2 decreases and a maximum imme- 
diately inside the first-order Bragg position obtains. 
The minimum value outside the band is due to the 
negative branch-2 contribution combined with the de- 
crease in the branch-1 value. 

As shown above the thick-crystal contrast is deter- 
mined by the n ~  I terms. The reduced anomalous ab- 
sorption obtained is therefore due to scattering at 
large depths in the crystal from random directions into 
the band directions. 

The calculated 022 band contrast as a function of s 
for /~t= 3.5 is shown in Fig. 7, where a deficient band 
appears at small and large scattering angles. For this 
thickness a disappearance angle for thermal scattering 
is hence found at fl~ -~ s066. Another angle corresponding 
to the one denoted ~ above, seems to be predicted at 
low angles (see dotted curves in Fig. 7). Here, however, 
the assumption leading to equation (15) breaks down 
and equation (12) has to be used. 
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The 022 higher-order lines 
As for the band, we can for the contrast of higher- 

order lines distinguish between thin-crystal and thick- 
crystal profiles; the first type being due to the single- 
scattering contribution while the latter can be ascribed 
to the n > 1 terms. At any thickness, the higher-order 
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$111 1 
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Fig.7. Calculated band-intensity variations with scattering 
angle for p t=  3"5. g = 0 2 ~  

lines are asymmetric as shown in Fig. 4. In a thin 
crystal the maximum in the asymmetric line is found 
immediately inside the ordinary line position, and the 
minimum immediately outside, while the contrast is re- 
versed in the thick-crystal case. Both profile types can 
be understood from Fig. 6. The first type is essentially 
an absorption independent effect, [equation (15c)], and 
the maximum in, e.g., the second-order line is due to 
the maximum value in the product [(,212c:.2 inside the ~-'01 uOg' 

line position, whereas the intensity on the other side of 
the line position results from the minimum in the same 
product for branch 3. The reversed contrast of the 
second-order line in a thick crystal is due to the strong 
absorption of branch 2 inside and low absorption of 
branch 3 outside the line position. 

For a given scattering angle, the thickness of zero 
contrast will depend on the line considered as different 
branches and consequently different absorption par- 
ameters are involved for e.g. the second and third- 
order lines. This effect can be seen from Fig. 5 (b) and 
(c) where the disappearance thickness for the second- 
order line is varying from /~t=5.6 to 3-8 when the 
scattering angle changes from Son to Sos8. The corre- 
sponding values for the third-order line are # t =  6 and 
4.5. 

The contrast variations with angle for constant 
thicknesses are shown in Fig. 8 (b) and (e). These 
curves have a similar type variation as R~. Fig. 8 (a) 
shows that R1 is less than zero for #t = 5 independent of 
scattering angle. R2, however, is equal to zero for 
~:~=0.35 Son and f12 = 1.42 So2~, and R3=O for ~3=0"27 
s022 and f13 = 3.27 son. From the variation in ft, it is thus 
found that the angular extent of thin-crystal contrast 
is increasing with increasing line order. The angles ~, 
appear as above at small angles where the intensity 

o6 / ~ . , = 1  R, , R2 i ̧  , R3 

i :- i00 
, ~ ! \  I i ~ I  

o o211  i 

iii' o.2 ~ ~ • 
o ' i'.._ 3 'i_ , 

, . ,  ,1_o., o,p 
s022 s066 s022 s066 s022 s066 

Scattering angle 

(a) (b) (c) 

Fig. 8. Calculated contrast  dependence on scattering angle for various thicknesses. (a) 02- ~ band contrast.  (b) 04~ contrast  
(c) 06~ contrast.  
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expression used represents an oversimplification, and 
the full equation (12) has to be applied. 

Both the size and the line-order dependence of the 
disappearance angles and thicknesses essentially reflect 
differences in the anomalous absorption parameters. 

--1'0 
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Fig.9. Calculated variations in (a) G~g, and (b) excitation coeffi- 
cients with beana direction,  g =  1 IT. 
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Fig. 10. Calcula ted  band- in tens i ty  var ia t ions  for g=l l - l - .  
(a)  So:~. (b) kit = 5. 

The influence of changes in/z J on these angles has so 
far not been investigated; it seems feasible, however, 
to subtract information about absorption parameters 
from the contrast variations described. 

The I1T band 

The l 11-type bands in Si are known to have double 
the normal width (Fowler & Marton, 1965), and it has 
been shown by Thomas & Humphreys (1970) that the 
same effect is observed as well for most metals at 
high voltages. This contrast in Si at conventional volt- 
ages which is mainly due to the difference in sign of the 
first and third-order structure factors, can be under- 
stood from the calculated excitation coefficients and 
G~o, shown in Fig. 9. The latter factors are approxi- 
mately constant for branches 1 and 2, the signs being 
different, however, while the branch-1 excitation coeffi- 
cient has a close to linear dependence on distance from 
the band centre up to the second-order line position. 
For the thin-crystal case one therefore obtains an ex- 
cess band with approximately linearly decreasing in- 
tensity up to the second-order line positions, as shown 
in Fig. 10(a). 

With increasing crystal thickness the anomalous ab- 
sorption leads to an enhanced importance of the 
branch-3 contributions. From Figs. 9 and 10, it is seen 
that these contribute in the middle of the band, and 
outside the second-order line position, i.e. the branch-3 
channelling directions. 

Calculated profiles for different scattering angles are 
shown in Fig. 10(b) where /zt=5. The reduction in 
anomalous absorption attributable to the higher-order 
terms is here reflected in the contrast variations of the 
central line. The contrast which has its maximum at 
intermediate scattering angles, is seen to decrease 
slowly with s. This is a typical variation which is ex- 
pected to be found in the patterns independent of ac- 
celeration voltage. 

it should be noted that the third-order line appears 
with R3 < 0, independent of crystal thickness. Negative 
contrast for small thicknesses originates here from the 
signs of GoJ~,, j = 3  and 4, which is opposite to the 
corresponding ones in the 066 case. 

Conclusions 

For an interpretation of diffraction patterns intensity 
contributions attributable to multiple diffuse scattering 
are essential if either the crystal thickness or the scat- 
tering angle is large. Such contributions are included 
in the present theory, which represents a unified de- 
scription of multiple diffuse scattering and Bragg 
scattering effects. Compared with theories given pre- 
viously for the contrast in Kikuchi line patterns the 
present intensity expressions are found to include the 
ones derived by e.g. Kainuma (1955), Gjonnes (1966) 
and Thomas & Humphreys (1970). 

Applied to thin, non-absorbing crystals essential 
differences between the present and previous theories 
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have not been found. No corrections are therefore in- 
troduced to available methods for structure-factor de- 
termination from diffraction effects in weak, narrow 
lines. 

In thick crystals the present description deviates con- 
siderably from previous ones. This deviation is found 
to arise from the inclusion of the higher-order diffuse- 
scattering terms being due to scattering into the par- 
ticular directions associated with the Kikuchi lines and 
bands at large depths in the crystal. Reduced anoma- 
lous absorption results in accord with observations. 

The contrast dependence on angle from the incident 
beam direction is for all thicknesses found to be de- 
pendent on the higher-order diffuse-scattering contri- 
butions which appear with increasing order with in- 
crease in angle. The previously unexplained variations 
in the contrast of symmetrical Kikuchi bands along 
their length are thus at present understood. In addition 
to the change from deficient to excess contrast found at 
small angles (Okamoto et al., 1970) a disappearance 
angle for the band contrast is predicted at a larger 
angle. Here the band contrast changes back to deficient 
when the n > 1 terms start to dominate over the single- 
scattering term. The extent of the area with excess con- 
trast is hence found to decrease with increasing crystal 
thickness. 

Typical profiles for the higher-order lines are found 
to have a similar variation to the band with thickness 
and scattering angle, i.e. thickness-dependent disap- 
pearance angles and angle-dependent disappearance 
thicknesses. A similar type inversion of contrast is re- 
ported by Thomas (1972) for the second-order line 
when going through the disappearance voltage. To 
separate this effect from the present ones care has 
therefore to be taken to ensure that equal-thickness 
patterns are compared. 

In electron microscopy from thick crystals electrons 
which have been exposed to multiple scattering inevi- 
tably contribute to the image. An extension of the pres- 
ent theory to bend-contour calculations is therefore 
suggested. For defect studies it was found by Uyeda & 
Nonoyama (1967) that the experimental maximum 
thickness corresponds to a thickness where reduced 
anomalous absorption is observed in the Kikuchi band. 
This correspondence shows that calculations of defect 
contrast in thick crystals have to be based on a diffrac- 

tion theory which takes multiple diffuse scattering into 
account; applications of the present theory for such 
calculations have so far not been investigated. 

The author is grateful to Dr J. Gjonnes for stimu- 
lating discussions. 
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